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ABSTRACT: World hunger is getting worse, while one-third of foods produced around the globe is wasted and never consumed. It
is vital in reducing food waste to promote the sustainability of agri-food systems. Intelligent packaging embedded with freshness
indicators can monitor food freshness in a real-time manner and be deployed for cutting food waste produced due to predetermined
expiration date and informing consumers of food safety. Biodegradable halochromic films have been increasingly utilized as freshness
indicators because of their low environmental impact. In this review, recent advances in biodegradable halochromic indicators for
intelligent packaging are reported. The pH-responsive behaviors of natural pigments, the development of biodegradable solid
supports for freshness indicators, the colorimetric response of freshness indicators to food products and simulated models, and future
challenges in this field are discussed. Particularly, novel technologies coupled with halochromic indictors are highlighted, including
sensor arrays, nanocomposites, smartphone-assisted detection, and ink-free printing.
KEYWORDS: biodegradable halochromic indicator, intelligent food packaging, natural pH-responsive dye, solid support, smart traceability

1. INTRODUCTION
World hunger has been on the rise since 2014. Although efforts
have been made by United Nations toward the “zero hunger”
goal that aims to eradicate food insecurity and inadequate
nutrition,1 it is estimated that the global population affected by
hunger will hit 840 million by 2030 accounting for 9.8% of the
world population.2 World hunger could get even worse due to
compromised functioning of agri-food systems caused by the
COVID-19 pandemic, climate change, and violent conflict.
Increasing food production serves as a strategy to feed more
people, but it requires more land and water resources and
would raise greenhouse gas emissions.3 Given the fact that
one-third of all foods produced around the globe is lost or
wasted,4 reducing food loss and waste can be another viable
strategy to combat world hunger. It is projected that a
reduction of 15% of food loss and waste in the United States
alone is sufficient to feed 25 million people annually.5 Besides
increasing food availability, less food loss and waste can also
reduce the economic cost of food wastage.6 From an
environmental standpoint, food wastage occupies 30% of
agricultural area in the world, not mentioning water and energy
used for food production, so that minimizing food loss and
waste could largely promote the sustainability of the agri-food
systems.
Food packaging is a traditional food preservation technology

relying on four basic functions: protection, communication,
convenience, and containment.7 Packaging systems act as a
barrier to separate food products from the surrounding
environment, therefore limiting extrinsic deterioration factors
including humidity, temperature, light, oxygen, and mechanical

damage. On the other hand, packaging prevents food waste by
informing consumers of product attributes, such as nutrition,
shelf life, and handling, to ensure appropriate use. However,
traditional food packaging systems remain to be improved in
terms of communicating food quality and safety. For example,
date labels that indicate food quality, such as “best before”,
“use by”, “sell by”, and “expire on”, routinely mislead
consumers into discarding food products that pass peak
quality but are still safe to consume.8 In addition, traditional
food packaging materials are inert and thus cannot inhibit
foodborne pathogens or report information on food safety to
prevent foodborne illnesses. According to a food safety report
by WHO, 600 million people worldwide are affected by
contaminated food every year.9 Once foodborne illness
outbreaks occur, millions of dollars of food items will be
mandatorily recalled and go to waste.
Smart packaging can be subdivided into active and

intelligent packaging and has been developed to ameliorate
conventional food packaging systems, with an end goal of
prolonging the shelf life of food items, enhancing product
traceability, and improving food safety and quality.10 Active
food packaging systems can release or absorb substances into
or from the packaged food or the headspace of food packaging,
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intended to reduce food safety hazards and retard food
spoilage by deterring degradative reactions such as oxidation
and microbial growth.11 Intelligent packaging technologies
enable food packaging to monitor conditions of packaged
foods or environment surrounding foods through tailored
sensing systems installed on the packaging, and to
communicate information regarding food safety and quality
via an array of signals.12 For example, freshness indicators that
are embedded inside intelligent packaging can report food
freshness by detecting changes in pH, temperature, moisture,
or levels of certain microbiological metabolites or chemicals
linked to food spoilage (e.g., carbon dioxide, organic acids,
biogenic amines, volatile nitrogen compounds, and sulfuric
compounds).13 These indicators offer dynamic freshness
prediction and inform consumers of discarding spoiled food
products by showing visible color changes or signals
recognizable by portable digital devices, aiming to improve
safety control of food products and help diminish food waste
resulted from misinterpretation on product date labels.
One growing concern on food packaging is raised by the

massive amount of packaging waste generated in the food
systems, which poses a serious threat to the environment and
food safety. In Canada, most food packaging waste ends up in

landfill, with only 20% of the waste being recovered for
recycling or reuse.14 Particularly, most plastic packaging wastes
are nonbiodegradable and can beak down into small plastic
particles in the environment, such as microplastics (size, 100
nm-5 mm) and nanoplastics (size, 1−100 nm).15 These
particles are present ubiquitously in marine, freshwater, and
agricultural ecosystems, thus bringing a safety challenge to the
agri-food system. This problem catalyzes a critical need for
biodegradable packaging that features low environmental
impact. For example, researchers are increasingly interested
in biodegradable plastics that derive from traditional
petrochemicals but can degrade completely by microorgan-
isms, including poly(vinyl alcohol) (PVA), poly(butylene
adipate-co-terephthalate) (PBAT), poly(butylene succinate-
co-butylene adipate) (PBSA), poly(butylene succinate)
(PBS), poly(glycolic acid) (PGA), and polycaprolactone
(PCL).16 Another green solution is to deploy bioplastics that
are made of materials deriving from renewable sources (e.g.,
plant, agricultural, marine, and microbial biomass). Biobased
plastics have great potential for commercial applications due to
their advantages of being biodegradable, renewable, cost-
effective, and readily available.17

Figure 1. (a) Schematic illustration of intelligent food packaging installed with a freshness indicator. (b) Halochromic pigments and solid supports
used for the development of biodegradable freshness indicators.

Table 1. Halochromic Pigments for Use in Biodegradable Freshness Indicators
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In this review, we report recent advances in biodegradable
freshness indicators that can be leveraged in intelligent
packaging (Figure 1a). The pH-responsive behaviors of natural
dyes, the development of biodegradable solid supports for
freshness indicators, the colorimetric response of freshness
indicators to food products and simulated models, and the
future challenges in this field are discussed. Particularly, novel
technologies coupled with biodegradable freshness indictors
are highlighted.

2. NATURAL PIGMENTS AS PH INDICATORS
Microbial growth is a principal factor causing food spoilage and
is often associated with pH changes in food products. For
example, lactic acid bacteria consume glucose in foods as an
energy source to synthesize a variety of organic acids, such as
lactic acid and acetic acid, which can reduce the pH of food
products.18 Gaseous carbon dioxide produced by microbes
decreases the pH in food environment since it reacts with
water to form carbonic acid molecules that can dissociate into
protons and bicarbonate ions.19 Additionally, putrefactive
bacteria naturally present on the surface of high-protein
foods, including meat and seafood products, can elevate the
pH of food samples by releasing nitrogen-containing
compounds (e.g., ammonia, trimethylamine, and dimethyl-
amine).20 Since metabolic products released during food
deterioration can largely affect the acidity or alkalinity of food
matrices, determining the pH change in food products is
considered as a viable approach to monitoring food freshness.
Natural pigments play essential roles in plants, animals, and

microbes. Pigment molecules can absorb light in the
wavelength range of visible light and thus display an array of
colors, such as red, yellow, green, blue, orange, brown, purple,
and shades. They also serve as attractants and camouflages,
participate in cell metabolisms, and offer protection against
oxidation, sun exposure, and radiation. There are various types
of pigments in nature, including hemes, carotenoids,
chlorophylls, anthocyanins, flavonoids, betalains, melanins,
tannins, quinones, and xanthones.21 Interestingly, some
pigments can alter color in response to different pH
conditions; they are known as halochromic pigments.
Halochromic pigments respond to pH changes by altering
their molecular configurations accompanied by shifted light
absorption wavelengths.22 Due to their pH-responsive
capability, biodegradability, and nontoxicity, halochromic
pigments have been widely used to develop colorimetric
food freshness indicators. This section covers different types of
natural halochromic dyes with the potential use in freshness
indicators by highlighting their main sources and pH-
responsive mechanisms (Table 1).

2.1. Anthocyanins. Anthocyanins are water-soluble pig-
ments imparting blue, red, and purple colors and exist in the
flowers, leaves, fruits, stems, and roots of plants (e.g., avocados,
blackberries, black carrots, red cabbages, beets, olives, and
sweet potatoes).23 Anthocyanin content in plant varies in the
range of 0.1%−1% of dry weight, depending on plant species
and growth conditions.21 Anthocyanins are considered as a
member of flavonoids since they are composed of glycosides
and acyl glycosides of anthocyanidins, flavylium cations (2-
phenylbenzopyrilium ions) with multiple hydroxyl and methyl
groups.24 Types of sugar attached to anthocyanidins contain
monosaccharides (e.g., glucose and xylose), disaccharides (e.g.,
rutinose and suphrose), and trisaccharides (e.g., gentiotriose).
Some sugar moieties are acylated with organic acids, such as

acetic, malic, ferulic, ascorbic, caffeic, sinapic, gallic, malonic,
succinic, citric, and oxalic acids.23 The most abundant
anthocyanins in nature include cyanidine (50%), delphinidin
(12%), pelargonidin (12%), peonidin (12%), malvidin (7%),
and petunidin (7%).25 Cyanidine has a magenta color and is
identified in berries and red-colored vegetables such as sweet
potatoes and red cabbages. Flowers, fruits, and vegetables are
prime sources for delphinidin (blue-red and purple),
pelargonidin (red and orange), peonidin (magenta), malvidin
(purple and blue), and petunidin (dark red and purple).
Anthocyanins respond to pH changes in an environment by

showing distinct colors (Table 1).26 At pH 1−4, anthocyanins
are present in the form of flavylium cations and confer a bright
red color. When pH is in the range of 4−5, the dehydration
and deprotonation of flavylium cations will occur, resulting in
color transitions from bright red to pale pink and eventually to
colorlessness due to the formation of a carbinol pseudobase. At
higher pH levels, flavylium cations are further deprotonated
into quinoidal anhydrobase (pH 6−7) and anionic quinoidal
base (pH 7−8) exhibiting violet and blue colors, respectively.
Above pH 8, chalcone is produced because of the central ring
fission of the anhydrobase, showing a light-yellow color. It is
noted that the pH-responsive color change of anthocyanins is
largely determined by the source of these pigments.25 Besides
pH conditions, the stability of anthocyanins is susceptible to
oxidation, hydration, ultraviolet light, temperature, and enzyme
degradation. These pigments also react with food components,
such as ascorbic acid, sulfur dioxide, and sugars.27

The methods for the extraction of anthocyanins comprise
solid−liquid extraction (SLE), supercritical fluid extraction
(SFE), ultrasound-assisted extraction (UE), microwave-assis-
ted extraction (ME), and pulsed electric field-assisted
extraction (PEFE).28 Selecting an appropriate extraction
method is vital as it can affect the yield and purity of
anthocyanins. For example, SLE, ME, UE, and PEFE are able
to achieve a higher yield of anthocyanins than the traditional
SLE. They are also advantageous for adopting water as the
extraction solvent instead of hazardous organic solvents. In
addition, SFE has been reported as a promising technique to
extract anthocyanins in a time-efficient manner, but the crude
extract often requires further purification due to the presence
of impurities.

2.2. Betalains. Betalains are a group of water-soluble,
nitrogen-containing pigments that can be subdivided into two
types: betacyanins and betaxanthins.29 Betacyanins are red
pigments found in prickly pears, red pitaya flesh, red beets,
globe amaranth flowers, and red amaranths leaves, while
betaxanthins exist as yellow pigments in yellow beets and
cactus pears.29,30 The stability of betalains is affected by
environmental factors such as pH, enzymes, oxygen, temper-
ature, and light.30 This group of pigments possess the highest
stability at pH 3−7, but start to degrade at higher pH levels
causing a stark color change (Table 1). For instance,
betacyanins exhibit an orange color at pH 8−9 and turn to
yellow when the pH is increased to 12.31 This is because
betacyanins degrade into colorless cyclo-DOPA 5-O-(malon-
yl)-β-glucosides and yellow betalamic acids at an alkaline
condition. The most used extraction technique for betalains is
SLE. Traditionally, betalains are extracted by immersing the
grounded plant materials in a solvent, either water or 20−50%
(v/v) of methanol or ethanol solutions. However, SLE is time-
consuming and has a low yield, thereby driving the need for
more efficient extraction methods. For example, PEFE has
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been deployed to promote the extraction efficiency of betalains
by creating high degrees of permeabilization to expedite the
mass transfer within the SLE system.32 Moreover, ME can
achieve a doubled efficiency for betalain extraction compared
with SLE. The addition of ascorbic acid in ME can further
ameliorate the yield of betalains by preventing the final
products from degradation.33

2.3. Carotenoids. Carotenoids are oil-soluble compounds
derived from plants, algae, yeasts, fungi, archaea, and
eubacteria.34 Most carotenoids own a C40 isoprenoid skeleton
and can produce yellow, orange, or red colors. These pigments
are classified into two groups: carotenes and xanthophylls.35

Carotenes belong to hydrocarbons, including α-carotene, β-
carotene, and lycopene. Xanthophylls encompass lutein,
neoxanthin, β-cryptoxanthin, violaxanthin, and zeaxanthin,
whose molecular structures are characteristic of oxygen-
containing functional groups, such as hydroxy, aldehyde,
carbonyl, epoxide, and carboxylic groups. The most abundant
sources for carotenoids are fruits and vegetables, comprising
carrot, apricot, mango, pumpkin, spinach, and broccoli. In
addition, microorganism-derived carotenoids have grown
popular in recent decades. Astaxanthin, for instance, can be
produced by Haematococcus pluviali, Phaf f ia rhodozyma, and
Chlorella vulgaris.36,37 Carotenoids are prone to oxidation
because of unsaturated double bonds in their backbone and
disclose the highest stability under neutral conditions. The
colorimetric response of carotenoids to pH originates from the
instability of pigment molecules in acidic and alkaline
conditions caused by ion pairing, protonation, and cis−trans
isomerization.38 Given the hydrophobic nature of carotenoids,
extraction solvents for these pigments include hexane, acetone,
and ethanol. Water removal is required to promote the
extraction efficiency. For dehydration, lyophilization is more
preferred than heat drying since high temperature can induce
degradation and isomerization of pigments.39 Soxhlet extrac-
tion is a conventional approach to extract carotenoids, but it is
relatively time- and resource-consuming. Other extraction
techniques include ME, UE, SFE, PEFE, enzyme-assisted
extraction (EE), and accelerated solvent extraction (ASE).

2.4. Curcumin. Curcumin, a diferuloymethane, is a lipid-
soluble yellow pigment ubiquitously present in the rhizome of
Curcuma longa. Curcumin is a prime curcuminoid and owns a
seven-carbon backbone that is linked with an α,β-unsaturated
β-diketone moisty and aromatic o-methoxy-phenolic group.40
So far, this pigment has been applied in the food industry as an
orange-yellow colorant and a bioactive compound owing to its
antimicrobial and antioxidant activities.41 Moreover, curcumin
is able to alter the color in response to different pH levels.42

Curcumin is most stable at pH 3−7, yet its color will change
from yellow to orange due to deprotonation when the pH is
increased to 8. With further increase in alkalinity, the pigment
will lose more protons and turn into reddish brown. Curcumin
possesses two tautomeric forms: the keto form prevalent under
acidic and neutral conditions and the enol form dominant in an
alkaline condition.43 Curcumin is sensitive to oxidation and
degradation under light and heat, which is often taken into
consideration upon the selection of extraction methods.
Techniques for curcumin extraction include Soxhlet extraction,
ME, UE, EE, SFE, and ionic liquid-based extraction (ILE).44

ILE has been reported as a promising method for curcumin
extraction because ionic liquid, known as a “designer solvent”,
can be utilized to extract phytochemicals with tunable polarity,
viscosity, and hydrophobicity.

2.5. Quinones. Quinones are water-soluble pigments
found in algae, fungi, bacteria, flowering plants, and
arthropods.45 According to their molecular structures,
quinones can be subdivided into three classes: benzoquinones,
naphthoquinones, and anthraquinones.46 Benzoquinones own-
ing a single benzene ring with two carbonyl groups serve as a
basic subunit of a variety of quinones. Particularly,
naphthoquinones are benzoquinones attached with an
aromatic ring, whereas anthraquinones own a para-benzoqui-
none structure linked with two aromatic rings at C2,3 and C5,6
positions, respectively. Quinones can produce different colors
depending on their molecular structures, and some of them
have been applied as pH sensitive dyes (Table 1). For example,
alizarin is a typical anthraquinone extracted from madder plant
roots and discloses a yellow color in its neutral state at pH 2−
4.47,48 The alizarin molecule switches to a monoanionic state at

Figure 2. (a) Colorimetric sensor array constructed by printing four natural pigments on a reverse-phase silica gel.52 Pigments were extracted from
red radish (I), spinach (II), black rice (III), and winter jasmine (IV). Color signals were analyzed using principal component analysis (PCA). (b)
Red cabbage anthocyanin-incorporated agarose film in conjunction with a smartphone for the detection of milk freshness.62 (c) Colorimetric
composite-based indicator for smartphone-assisted detection of fish freshness.60 A hydrogel ink containing red cabbage anthocyanins,
carboxymethyl chitosan, and oxidized sodium alginate was printed on a cellulose paper to form the indicator.
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pH 5−7 because of resonance effect thereby turning into red,
while in high alkalinity conditions (pH > 9), the color transits
to purple attributed to the formation of dianionic molecules.
Moreover, shikonin, a naturally occurring napthaquinone
derived from the roots of Lithospermum erythrorhizon, is able
to show distinct colors over a wide pH range: bright red at pH
2−5, bluish-red around pH 7, and blue at pH 9−12.49 The
colorimetric response of shikonin extracts to pH varies
according to their plant sources and extraction approaches.
Extraction methods for quinones include ME, UE, EE, SFE,
reflux extraction, Soxhlet extraction, and sublimation-assisted
extraction. Reflux extraction has been used as a conventional
technique for quinone extraction due to its cost-efficiency and
high yield.

2.6. Chlorophylls. Chlorophylls offer a green color in
cyanobacteria, algae, and plants. Chlorophylls have a
tetrapyrrole structure featuring a magnesium ion in the center
of a chlorin and exist in nature in various forms, including
chlorophyll a, b, c1, c2, and d, which differ in the pyrrole ring
structure or side groups.50 Major chlorophyll types in plants
are a and b, with a methyl group and a formyl group in the C7
position, respectively. When exposed to light, air, heat, or
extreme pH, chlorophylls will display a different color mainly
because the magnesium ion in the molecule is replaced by a
hydrogen ion or the dissociation of functional groups occurs.51

For instance, dark green chlorophylls can turn to olive green
due to the formation of pheophytins under heat or high acidity,
or change to bright green owing to the dissociation of phytol
groups induced by enzyme or high alkalinity. However, the
color differences are unappreciable to the naked eye. In this
scenario, smart devices are deployed to assist in capturing
images of pigments and digitalizing color data for further
analysis. For example, Huang and colleagues employed
chlorophylls extracted from spinach as a pH-responsive dye
in a colorimetric sensor array for detecting pork spoilage.52

Volatile compounds released by pork triggered dynamic color
changes of the sensor, which were recorded in a RGB color
mode by a scanner and then analyzed based on principal
component analysis (Figure 2a). Chlorophylls have been
extracted via SLE, EE, and SFE. Despite requiring the use of
expensive equipment, SFE gains a higher popularity due to its
advantages of high yield, low extraction temperature to
mitigate degradation, and low environmental impact because
of adopting nontoxic, nonflammable carbon dioxide as a green
solvent.53 Chlorophylls remain to be extracted using other
advanced approaches, such as ME, UE, PEFE, and ASE.

3. BIODEGRADABLE FRESHNESS INDICATORS
This review addresses biodegradable freshness indicators that
comprise two main components: (1) the halochromic pigment
capable of showing a colorimetric response to food freshness
and (2) the solid support that is biodegradable and
immobilized with the pH-responsive pigment (Figure 1b).
The sensitivity, reproducibility, stability, and response time of
these freshness indicators are largely governed by the surface
and structural properties of support materials. The solid matrix
is often designed to provide an abundant surface area suitable
for dye immobilization to ensure uniform color distribution.
Three-dimensional (3D) structures, particularly porous and
nanoscale structures, have been deployed to ease the
interactions between the halochromic dye and target
molecules. Due to their low environmental impact, biodegrad-
able films have gained considerable attention for the

preparation of novel sensing materials. In this section,
freshness indicators that are supported with biopolymers,
biodegradable synthetic polymers derived from biomass and
petroleum, and biodegradable composites are discussed, and
their applications in food and simulated models are
summarized and listed in Table S1. Biodegradable freshness
indicators are prepared based on different methods, including
solution casting, thermocompression, extrusion, immersion,
electrospinning, inkjet printing, coating, and screen-printing.
Among them, the casting method is the most popular
technique. This method involves the processes of incorporat-
ing the halochromic pigment into a film-making solution,
casting the homogeneous mixture into a mold, and eventually
evaporating the solvent to obtain an indicator film.54,55 The
thermocompression method is used to produce the indicator
film by adding a mixture of the pigment and biodegradable
polymers into a mold cavity and then pressing the blended
material under a specific heat and pressure condition.56 For the
extrusion approach, the halochromic dye is added in a
concentrated film-making solution or compounded with
biodegradable polymers into a pellet. Afterward, the mixture
is fed in an extruder, heated with gradual temperature rise, and
extruded into a film.57 Moreover, biodegradable freshness
indicators can be made by coating or printing a pigment-
containing layer on the surface of the solid support, immersing
the solid support in a pigment solution followed by drying, or
electrospinning fibrous structures incorporated with the
halochromic dye.58−62

3.1. Polysaccharide-Based Indicators. 3.1.1. Starch.
Starch is a polysaccharide comprising glucose subunits
connected through glycosidic bonds, owning a basic chemical
formula of (C6H10O5)n. Major sources of starch include corn,
cassava, potato, and arrowroot. Starches derived from various
plants differ in the contents of amylopectin and amylose,
thereby showing distinct functional and chemical properties.63

In nature, starch exists in the form of granules with a diameter
in the range of 0.1−200 μm. Starch granules are able to swell
and gelatinize in heated water, and result in a solid film after
being cast and dried in a flat plate.64 To prepare starch-based
freshness indicators, pH-responsive pigments are often mixed
with the starch solution after gelatinization but before drying
to allow sufficient interactions among pigment molecules and
starch granules. After drying, halochromic dyes (e.g.,
anthocyanins) can cross-link with starch molecules via strong
hydrogen bonds.65 Plasticizers are incorporated in starch-based
indicators to improve flexibility of solid films by promoting the
mobility of starch molecules within film matrices. Most used
plasticizers in freshness indicator films include glycerol and
sorbitol.56,66 It is worth mentioning that some halochromic
pigments can also act as plasticizers. For example, Nogueira
and colleagues modified an arrowroot starch-based film with
blackberry pulp.67 The pulp served two roles in the indictor
film: a natural dye lending a red color and a plasticizer that
significantly ameliorated the elongation at break of the film.
The authors also reported that the indicator film was
susceptible to intense food processing (e.g., sterilization) due
to degradation of the halochromic dye in starch films, which
limited its industrial use. Additionally, the hydrophilic nature
of starch-based indicator films limits their applications in a
humid environment. This challenge could be addressed by
applying chemically modified starches or more hydrophobic
components into the film matrices. Applications of starch-
based freshness indicators have been demonstrated in different
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protein-rich food models, such as fish, shrimp, chicken, and
pork (Table S1).
3.1.2. Cellulose. As the most abundant biopolymer on earth,

cellulose is constituted of anhydro-D-glucose units joint by β-
1,4-glycosidic bonds, and has a basic chemical formula of
(C6H10O5)n. Commercial cellulose products primarily origi-
nate from wood and cotton, while cellulose produced by
bacteria has been catching attention due to its natural
nanofibrous structures and superior mechanical properties.68,69

Cellulose films have been widely applied as solid supports for
freshness indicators because of their low cost, highly porous
structures to facilitate interactions between indicators and
volatile compounds released by foods, and excellent mechan-
ical performance derived from the highly ordered crystalline
phase within cellulose fibrous structures and the hydrogen
bonds induced by hydroxyl groups of cellulose.70 However, the
hydrophilic nature of cellulose has become a roadblock to the
application of cellulose-based indicators in the foods high in
moisture content. For example, Filipini and co-workers
reported a halochromic film made of methylcellulose and
anthocyanins extracted from Jambolão skin, which could
degrade in seawater and soil within 2 and 15 d, respectively.71

The film showed a good strength and flexibility but was highly
soluble in water, thereby not suitable to have direct contact
with meat and aquatic food products. To tackle this problem,
freshness indicators have been prepared using cellulose acetate,
which has a higher hydrophobicity than native cellulose and
can be utilized to construct films with tailored porous
structures by electrospinning. Electronspun films comprising
cellulose acetate have been demonstrated to tightly bind with
alizarin so that the leaching rate of alizarin from cellulose films
can be controlled at a low level even in the foods with a high-
water content.58

Selecting appropriate halochromic pigments for incorpo-
ration in cellulose films is paramount in ensuring notable
colorimetric response of indicators. For example, carbox-
ymethyl cellulose (CMC) films embedded with blueberry
extract exhibited stronger color signals in response to freshness
of raw chicken than CMC films added with red grape skin
extract.72 In addition, Ezati and colleagues developed two
indicators by adding alizarin in a carboxymethyl cellulose film
and a cellulose nanofiber film, respectively. The latter one
reacted to ammonia, a volatile spoilage indicator, with a
stronger color signal by providing abundant surface area to
allow rapid binding with target molecules.48 Noticeably,
addition of natural pigments is a factor affecting mechanical
properties of cellulose-based freshness indicators. For example,
Dong and colleagues reported a cellulose film incorporated
with naphthoquinones capable of monitoring freshness of raw
shrimp and pork based upon colorimetric response.59 Due to
the presence of naphthoquinones, the indicator disclosed a
higher tensile strength than a pure cellulose film and
commercial plastic materials (polyethylene and polypropy-
lene).
3.1.3. Chitin and Chitosan. Chitin, the second most

abundant biopolymer after cellulose, is present prevalently in
the exoskeletons of insects and crustaceans as well as cell walls
in fungi. This biopolymer is built based on N-acetylglucos-
amine monomers polymerized through β-1,4-linkages. After
partial deacetylation in an alkaline environment, chitin can
transform into chitosan.73 Although both chitosan and chitin
are inexpensive, biodegradable, and antimicrobial packaging
materials, chitosan is more advantageous in terms of

mechanical performance and transparency.74 Since preparation
of chitosan films requires an acidic condition, the films are not
suitable to incorporate halochromic pigments unstable or
insoluble at low pH levels. In addition to enabling colorimetric
response to pH, halochromic pigments serve multiple
functions in chitin- and chitosan-based freshness indicators.
For example, black chokeberry extract has been employed to
improve the water-resistant capacity of chitosan films by
inducing the formation of hydrogen bonds, electrostatic
interactions, and possible ester linkages.75 Incorporation of
sweet potato extract offered chitosan films a higher thermal
stability but decreased elongation at break.76 Likewise, adding
curcumin in chitosan films resulted in decreases in both tensile
strength and elongation at break.77 Besides, black eggplant
extract and alizarin have been used to enhance the ultraviolet
light barrier and antioxidant properties of chitosan films.78,79

Applications of chitin- and chitosan-based freshness indicators
have been demonstrated in a variety of food models, including
meat, chicken, seafood, milk, and fresh produce. One future
research direction for this group of freshness indicators is the
search for novel halochromic pigments used in chitin and
chitosan films. For instance, Wang and co-workers reported a
novel chitosan-based indicator immobilized with black soybean
seed coat extract that could signal distinguished color over the
pH range of 3−10.80

3.1.4. Gums. Gums, also known as hydrocolloids, are water-
soluble carbohydrate polymers that have been widely used in
the food industry for the development of food structures. Gum
films are characteristic of high tensile strength and thermal
stability and serve as popular solid support for halochromic
dyes because gums can bind firmly with natural dyes via
hydrogen bonds and hydrophobic interactions. A vast range of
gums have been used to fabricate biodegradable freshness
indicators with great potential for commercialization.
Pectin is an anionic linear polysaccharide primarily

constituted of D-galacturonic acid units linked via α-1,4-
glycosidic bonds, with a small fraction of rhamnose units in the
backbone and xylose, galactose, and arabinose in the side
chains.81 Commercial pectin is mainly extracted from apple
pomace and citrus fruit peel and owns different levels of methyl
esterification, which are a key factor affecting gelling properties
of pectin products. Pectin can form into films with a high
strength but poor flexibility. To mitigate the brittleness of
pectin films, it is essential to add plasticizers in pectin-based
freshness indicators, such as propylene glycol, glycerol, and
sucrose,82 while taking into consideration that plasticizers
should not interfere with the interactions between halochromic
dyes in pectin films and volatile organic compounds released
by foods. Freshness indicators made of pectin have been
validated in a wide range of high-protein foods, such as
chicken, beef, fish, and shrimp. Their color signals have been
well linked with the levels of food spoilage indicators, including
total volatile basic nitrogen (TVB-N) and total viable count
(TVC).42,83 However, the indicators remain to be improved as
the leakage of pigments from pectin film matrices has been
observed.
Carrageenan, a sulfated linear polysaccharide derived from

red seaweed, is composed of galactose and anhydrogalactose
units connected by alternating α-1,3- and β-1,4-glycosidic
bonds. Three types of carrageenans are often deployed to
prepare biodegradable films, including iota (τ)-, lambda (λ)-,
and kappa (κ)-carrageenans. Among them, κ-carrageenan
possesses the highest tensile strength.84 To increase the
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flexibility of carrageenan film, the film matrix is often
incorporated with plasticizers or supplemented with stronger
polymers. Halochromic pigments also play a role in modifying
mechanical properties of carrageenan films. For example, Liu
and co-workers constructed a halochromic indicator consisting
of κ-carrageenan and curcumin to determine pork and shrimp
spoilage.85 Curcumin rendered the film not only a higher
tensile strength and thermal stability, but also the ability to
display stark color changes in alkaline conditions (pH 8−10).
Another study reported a κ-carrageenan film embedded with
anthocyanins from Lycium ruthenicum, whose presence
decreased the strength and stiffness of the gum film but
enabled its colorimetric reaction to freshness of milk and
aquatic products.86

Gellan gum has been reported to act as a suitable solid
support for purple sweet potato extract.87 Anthocyanins in the
extract endowed the gum film with a higher hydrophobicity
and tensile strength, weaker swelling properties, and the ability
to examine the growth of Escherichia coli cells according to
color signals. When triggered by volatile amines released by the
bacteria, the indicator exhibited a color transition pattern from
purple to blue to yellow-green, implying its potential to
monitor microbial spoilage. Moreover, Taghinia and colleagues
fabricated a novel freshness indicator by incorporating
curcumin into a film made of Lallemantia iberica seed gum.55

In a plastic package added with shrimp, the indicator showed a
growing a* value (revealing redness) over 5 d, which was
elicited by volatile nitrogenous compounds released by shrimp
samples. In a previous study, Liang and co-workers
demonstrated the use of Artemisia sphaerocephala Krasch
Gum (ASKG) films as food packaging materials attributed to
their good mechanical performance.88 Afterward, they
developed an ASKG-based indicator loaded with anthocyanins
from red cabbage.89 The anthocyanins showed a plasticizing
effect in the film matrix, leading to a significant increase in
elongation at break when pigment content was over 5% (w/w).
This indicator displayed appreciable color changes when
placed in different buffer solutions (pH 3−10) and in a
humidity-modified container filled with ammonia. Other gums,
such as locust bean gum, can also serve as the solid support to
construct freshness indicators.

3.2. Protein-Based Indicators. Protein films possess good
mechanical properties analogous to polysaccharide films but
are more resistant to moisture. Plasticizers are often added in
protein films to increase flexibility and decrease brittleness.
The formation of protein films involves noncovalent bonds,
such as electrostatic interactions, hydrogen bonds, hydro-
phobic interactions, and van der Waals forces. In some
scenarios, cross-linking via covalent bonds is induced in the
film matrix by physical or chemical approaches to achieve
better mechanical performance. So far, protein films have been
prepared by animal proteins (e.g., whey protein, casein, egg
white protein, and gelatin) and plant proteins (e.g., corn zein,
soy protein, peanut protein, and wheat gluten protein).90,91 In
the past five years, gelatin has been mostly used to fabricate
protein-based freshness indicators since the material is
inexpensive, water-soluble, and can result in films with
desirable mechanical properties and transparency. For example,
Musso and colleagues fabricated two types of curcumin-
incorporated gelatin films using a casting method.92 Film-
forming solutions containing gelatin and curcumin were
prepared in two solvents, either water or water/ethanol
mixture. After drying, the latter one resulted in a gelatin film

with a stronger color signal because of the higher solubility of
curcumin in water/ethanol mixture than water. Similar results
were reported by these authors in another study. Two types of
gelatin films modified with red cabbage extract were
synthesized using water and water/ethanol mixture as solvents,
respectively.93 The latter one displayed a more intense color
when dropped with either highly acidic or alkaline solutions. In
addition, Liu and co-workers constructed a freshness indicator
composed of fish gelatin and haskap berry extract.94 The
extract was well compatible with the film matrix thanks to the
formation of intermolecular hydrogen bonds among the
hydroxyl groups of anthocyanins and the amino and hydroxyl
groups of gelatin molecules. Gelatin-based indicators contain-
ing different concentrations of extract (0.5%−3%, w/w) were
prepared, and they all showed appreciable colorimetric
responses after being immersed in different buffer solutions
(pH 3−12). However, in a shrimp model, only the film added
with 1% (w/w) extract was able to display an evident color
transition from brown to green when the TVB-N level of
samples hit the limit of shrimp spoilage.

3.3. Polyhydroxyalkanoate (PHA)-Based Indicators.
PHAs, a group of polyesters synthesized by microorganisms,
have captured special attention in the packaging industry
because they are biodegradable, sustainable, and can be used to
develop bioplastics alternative to petroleum-derived plastics.95

Many PHAs have been reported, including poly(3-hydrox-
yoctanoate) (PHO), polyhydroxyhexanoate (PHH), poly(3-
hydroxybutyrate) (PHB), and polyhydroxyvalerate (PHV).
Nevertheless, PHA-based freshness indicators have not yet
been extensively studied. This is because preparation of PHA
films often requires the use of expensive equipment, such as
extruders at laboratory or industrial scales. The extrusion
process involves high temperature that can cause degradation
of natural pigments. Moreover, mechanical prosperities of
PHA films remain to be ameliorated compared with
commercial plastics.96 In a recent study, Latos-Brozio and
Masek produced PHB-based indicator films incorporated with
curcumin, β-carotene, and chlorophyll, respectively.57 The
indicator films were manufactured by using a laboratory
extruder with a chamber temperature of 160 °C, and could
signal dynamic color changes over 12 d when exposed to
ultraviolet light and high temperature as the key factors causing
food spoilage. However, colorimetric response of the indicators
to pH was not assessed.

3.4. Synthetic Polymer-Based Indicators. Synthetic
polymers used for developing biodegradable indicators are
grouped into two types: biodegradable biomass-derived and
petroleum-derived polymers. The former ones are synthesized
based on renewable raw materials. For example, synthesis of
polylactic acid (PLA) entails polymerization of lactic acids that
are produced through microbial fermentation of the biomass
derived from corn, potato, and sugar cane.97 The latter ones
are synthesized based on petrochemicals and include PVA,
PBAT, PBSA, PBS, PGA, and PCL. For example, PVA is
prepared by hydrolysis of polyvinyl acetate, whose preparation
involves polymerization of vinyl acetate that is made from the
reaction of ethylene (a petrochemical) with acetic acid and
oxygen. In the recent years, studies on synthetic polymer-based
freshness indicators have shown an increasing trend, with PVA-
based indicators gaining the highest popularity. Preparation of
novel indicators by other biodegradable synthetic polymers
remains virtually unexplored. Although PVA is advantageous in
terms of transparency and mechanical properties compared
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with biopolymers such as proteins and polysaccharides, this
polymer has a higher material cost, lower biodegradability, and
limitations for use in moderately acidic conditions.98 For
instance, Weston and colleagues constructed two pH-
responsive indicators by incorporating anthocyanins in a
PVA film and an agarose film, respectively, followed by
determining their colorimetric response to lactic acid in the pH
range of 4.0−6.8.62 The agarose-based indicator displayed
stronger color signals than the PVA-based indicator and
therefore was selected to detect milk freshness in conjunction
with a smart device for data collection and analysis (Figure
2b). The PVA-based indicator showed poorer sensitivity
because amorphous moieties of PVA hydrated in aqueous
solution leading to partial ionization of hydroxyl and acetate
groups, which caused a localized pH transition in the film to
the range of 5−6. The upgraded pH was close to the pH
created by lactic acid and thus interfered with the colorimetric
response of indicator films. It is noteworthy that the high water
solubility of PVA allows blending PVA with biopolymers in
aqueous film-forming solutions to produce strong and
transparent composite films for halochromic dye immobiliza-
tion. Examples of PVA-based composite freshness indicators
are described in the following subsection 3.5. In addition, PLA
as a generally recognized as safe (GRAS) material approved by
FDA has great potential for use as a solid support to load
halochromic dye. For example, PLA films incorporated with
curcumin, β-carotene, and chlorophyll, respectively, were
developed as indicators to determine exposure time of
packages to ultraviolet light and high temperature. Never-
theless, their applications for the detection of food freshness
have not been reported yet.57 In another study, Ghorbani and
colleagues constructed an anthocyanins-incorporated PLA film
whose application as a freshness indicator was validated in four
food models, including fish roe, raw shrimp, ground beef, and
raw chicken.99 Two additives were used in this film matrix to
enhance sensing performance: polyethylene glycol as an
opening agent to offer the PLA film a porous surface structure
for promoting the diffusion of amine gases with the film;
calcium bentonite that contributed to the uniform distribution
of anthocyanins in the film matrix. This indicator had a

remarkable water-resistant capability and did not show
significant leakage of pigments when immersed in water for
up to 24 h, indicating its potential use in high-moisture food
products.

3.5. Biodegradable Composite Films as Indicators.
Desirable solid supports for freshness indicators are expected
to own good mechanical properties, water-resistant capability,
compatibility with halochromic dye, and low production cost.
To meet these needs, two or more film-forming constituents
are often incorporated into one film matrix to generate a
composite film that possesses superior physicochemical
properties and/or extra functions compared with films made
of one single polymer alone. Composite films for the
application in freshness indicators can be prepared with
different biopolymers, synthetic polymers, or combination of at
least one biopolymer and synthetic polymer.
Composite films made of proteins and polysaccharides have

been applied as solid supports in a variety of freshness
indicators. A study reported by Hu and colleagues introduced a
quaternary ammonium chitosan/fish gelatin film incorporated
with amaranth extract for the determination of shrimp
freshness.100 Quaternary ammonium chitosan offered hydroxyl
groups and positively charged trimethylammonium groups that
allowed the formation of hydrogen bonds and electrostatic
interactions with gelatin, therefore resulting in a strong
composite film. The extract rich in betalains acted as a
plasticizer in the film resulting in a significant increase in
elongation at break. Roy and Rhim reported κ-carrageenan/
gelatin-based films showing multiple functions for the use in
intelligent food packaging.101 Main constituents in the films
played different roles: κ-carrageenan and gelatin rendering
smooth surface and compact structures as solid supports,
shikonin incorporated as a pH-responsive dye, and propolis
allowing extra antimicrobial and antioxidant effects. The
resulting films were harnessed to detect milk spoilage,
exhibiting visual color change in response to the decrease in
pH as milk spoiled. Interestingly, Chayavanich and co-workers
developed a smartphone-coupled freshness indicator for
shrimp and chicken.102 The starch/gelatin composite modified
with red radish extract showed dynamic color changes during

Figure 3. (a) Freshness indicator printed with programmed information through an electrochemical printing device.113 The indicator is a
composite comprising poly(vinyl alcohol), agar, and curcumin. (b) Colorimetric response of composite-based indicators modified with and without
ionic liquid to ammonia and the sensing mechanism.120 1-Butyl-3-methylimidazolium chloride (BmimCl) was used as the ionic liquid to modify the
composite film made of cellulose nanocrystals, hydroxypropyl guar, and anthocyanins.
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food storage, with a smartphone that worked in tandem with
the indicators by capturing film color, digitalizing data with an
image processing software, and linking color signals to different
freshness levels. In another study, an anthocyanin-loaded
composite comprised of carboxymethyl chitosan and oxidized
sodium alginate was developed to detect freshness of fish
products (Figure 2c).60 Natural pigments and film-forming
components were dispersed in silica sol to generate a hydrogel
ink, which was then printed on a cellulose paper to obtain the
indicator film. After the film was installed in the inner
compartment of a plastic container filled with raw fish fillets,
nitrogen-containing compounds released from fish started to
accumulate in the container and gradually triggered different
color patterns of the indicator, which were imaged by a
smartphone. The color signals displayed by the film were then
analyzed using a supervised machine learning algorithm via
back-propagation neural network and then linked to three
levels of fish freshness: fresh, less fresh, and spoiled.
Biopolymers have been blended with synthetic polymers to

generate strong, biodegradable composites for halochromic
dye immobilization. For example, PVA has been added in
starch films and chitosan films to develop different composites
for use as halochromic indicators.31,103−108 Incorporation of
PVA endows composite films with a stronger tensile strength
than films made of starch or chitosan alone. Compared with
PVA/starch composite, PVA/chitosan composite is stronger
but less suitable for the fabrication of freshness indicators
because the presence of acetic acid in the film matrix mitigates
color response of halochromic dye to volatile compounds
released by protein-rich foods. In addition, halochromic
indicators have been developed based upon novel composite
film matrices that mix PVA with gelatin, tara gum,
glucomannan, okra mucilage, and agar, respectively.109−113

For example, the addition of okra mucilage and rose
anthocyanins is able to lend PVA films a lower crystallinity
but higher tensile strength and Young’s modulus due to new
hydrogen bonds formed among film components.111 Applica-
tion of the indicator in a shrimp model was demonstrated, with
the film showing distinguished color change over 32 h along
with the rise in TVB-N content in shrimp samples. Moreover,
it is noteworthy that an ink-free printing technology has been
applied to print information on a PVA/agar composite added
with curcumin (Figure 3a).113 An electrochemical printing
device is equipped with a robotic arm holding a cathode that
can generate hydroxide ions on the surface of the indicator film
through physical contact. The printed area with a change in pH
discloses a distinct color on the film. Both the indicator film
and electrochemically printed information can change color
over time in a seafood model but display significantly different
color signals.
Nanomaterials are materials with at least one dimension at

nanoscale (1−100 nm) and have been added in composites to
generate nanocomposites.114 Biodegradable nanocomposites
are used in freshness indicators aiming to offer strong solid
supports, stabilize natural pigments, enhance color signals,
promote halochromic dye distribution, and expedite the
response of indicators to food freshness through designed
structures. Nanomaterials incorporated in freshness indicators
include nanochitin, nanochitosan, nanocellulose, and metal
and metal oxide nanoparticles. Functions of nanomaterials vary
in different film matrices. For example, chitosan nanofibers
(diameter, 20−50 nm) have been used in an anthocyanin-
incorporated methyl cellulose film to enhance mechanical

resistance and improve colorimetric response in high-moisture
foods.115 Titanium dioxide nanoparticles (average diameter, 10
nm) have been employed in a chitosan-based film immobilized
with apple pomace extract to shorten colorimetric response
time and enhance color signals for the detection of fish
freshness; also, they can function as antimicrobial agents and
ethylene scavengers in smart packaging systems.116,117

Oxidized chitin nanocrystals (diameter, 10−15 nm) could be
filled in an anthocyanin-added chitosan film to ameliorate
tensile strength and modify optical properties in the wave-
length range of visible light.118,119 Moreover, cellulose
nanocrystals have been added into a hydroxypropyl guar-
based film containing anthocyanins to impart a stronger
mechanical strength.120 Interestingly, 1-butyl-3-methylimida-
zolium chloride (BmimCl), an ionic liquid, is also added in the
nanocomposite showing a plasticizing effect and allowing the
indicator to disclose more distinct colors in response to
ammonia released from raw shrimp during storage (Figure 3b).
The mechanism underlying the color variation is explained by
the red shift of wavelength of the indicator film, which is
caused by the aromatic ring structure with p−π conjugation in
BmimCl and the linkage of anthocyanins to chloride ions. It is
worth of mentioning that fluorescent nanomaterials, such as
carbon dots (CDs), have been harnessed to develop
fluorescent freshness indicators. For example, a freshness
indicator was prepared by modifying the surface of a paper
strip with a mixture of two fluorescent colorants, including blue
CDs derived from o-phthalaldehyde and a red fluorescent dye
(1-aminoanthraquinone).121 The fluorescent indicator was
able to respond to different concentrations of histamine (a
freshness indictor of fish) with distinct colors based upon the
interactions between aldehyde groups on CDs and the amino
group on histamine. A portable sensing platform constructed
by combining the indicator with a smartphone was used to
determine the freshness levels of fish products under ultraviolet
light. In another study, phthalic acid and triethylenediamine
were used to prepare CDs that can be added in milk to detect
freshness relying on the change in fluorescence intensity.122

The freshness of milk decreased with an increase in acidity,
which could reduce the fluorescence intensity of CDs due to
the protonation of carboxylic groups. Although fluorescent
nanomaterials have been used to develop novel freshness
indicators, their applications in the food industry are limited
due to their uncertain toxicity. The toxicity of most fluorescent
nanomaterials is unknown and remains to be explored. It is
possible that toxic fluorescent nanomaterials incorporated in
intelligent packaging may leach into food products. Therefore,
it is highly recommended that the toxicity of fluorescent
nanomaterials should be taken into consideration upon the
development of freshness indicators. Besides, a nanocomplex
constructed by chitosan hydrochloride and carboxymethyl
chitosan was used to encapsulate anthocyanins to raise their
color stability in freshness indicator films.123 It is important to
include appropriate film-forming polymers in the composites
because they could impact the light barrier properties,
mechanical performance, pH-sensitivity, and gas-sensitivity of
freshness indicator films.124

4. CHALLENGES AND FUTURE PERSPECTIVES
Biodegradable halochromic indicators are embedded in
intelligent packaging to monitor food freshness in a real-time
manner, with the goals of reducing food waste produced due to
a predetermined expiration date, informing consumers of food
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safety, and boosting the sustainability of current food systems.
Halochromic pigments used in the indicators are nontoxic and
mainly plant-derived but susceptible to intense food processing
because of their poor stability when exposed to oxidation,
hydration, ultraviolet light, high temperature, and enzymes in
foods. Biodegradable solid supports have a low environmental
impact and are vital in ensuring the sensitivity, reproducibility,
and stability of freshness indicators. Biodegradable composite
films are more advantageous as solid supports for halochromic
indicators than films made of one single biopolymer or
synthetic polymer alone, because of their superior mechanical
performance, high stability in high-moisture foods, strong
interactions with natural pigments for immobilization,
modulatory effect on color signal, and affordable production
cost. However, developing biodegradable halochromic indica-
tors for commercial use still faces significant challenges. First,
although biodegradable freshness indicators have been
validated in a vast array of food models, they may experience
dye leakage via direct contact with foods, which could mitigate
their sensing performance. If the leakage occurs, the
halochromic dyes that migrate from indicators into food
products will be considered as indirect food additives whose
presence in foods is strictly regulated by government agencies
for safety concerns. Second, most reported indicators have
been prepared at the laboratory scale using the casting method
due to convenience and low production cost of this method. It
is essential to develop novel freshness indicators by extrusion
and thermocompression methods, which are more suitable for
larger scale production. Third, consumer attitudes to the use of
colorimetric freshness indicators in intelligent food packaging
remain largely obscure. Benefits of these products have not
been well promoted. Fourth, current research only focuses on
investigating colorimetric response of freshness indicators
under simulated storage conditions, but their performance
along the food supply chain has not been reported yet. Fifth,
the stability of halochromic dyes in indicator films remains to
be improved since most natural dyes can react with food
components and are susceptible to oxidation, hydration,
ultraviolet light, temperature, and enzyme degradation.
Future studies on biodegradable freshness indicators are

suggested to focus on four perspectives. First, robust freshness
indicators with remarkable sensing performance should be
developed by adopting nanotechnology. Particularly, biode-
gradable nanocomposites will be applied as solid supports for
freshness indicators to offer tailored structures easing the
interactions of halochromic dyes with volatile compounds
generated from food products. CDs owning stable fluorescence
and resistance to intense food processing will be utilized as
halochromic fluorescent dyes for fabrication of freshness
indicators. Second, halochromic indicators should be coupled
with smart devices such as smartphones for data collection and
analysis, thereby preventing consumers from misestimating the
signal from colorimetric indicators by the naked eye. Third,
sensor arrays based on multiple freshness indicators should be
applied in intelligent packaging to provide more accurate
information on food freshness, but their color signals need to
be analyzed based upon machine learning algorithms that can
link the color response of indicators to different food freshness
levels. Fourth, more advanced technologies, such as electro-
spinning and 3D-printing, should be leveraged to manufacture
the freshness indicator with a desirable size and shape that
allow the material to be well embedded in food packaging. For
example, the halochromic dye can be incorporated in a

polymer solution and electrospun into a film with a highly
fibrous structure, or the dye can be added in a polymeric ink
and 3D-printed into a sensor with a tailored size and shape.
Finally, freshness indicators installed in intelligent packaging
can be integrated with the Internet of Things and cloud
computing technologies. Images of indicators will be read by a
smart device that can send the data to a cloud server for further
data analysis and management so that the industry will be able
to track food freshness along the supply chain and promote
food system sustainability in the long term.
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